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Abstract

All three project aims have been achieved by the end of the project period, i.e., create

two non-metric similarity measures and three relative mass measures, elicit the relative

functions of unary measures and binary measures, and evaluate the new measures in four

data mining tasks—two additional to the two tasks specified in the project proposal. The

non-metric similarity measures were created as a generalisation of mass estimation from

a unary function to a binary function. A derivative of mass measure called relative mass

was also investigated using three implementations. The research in relative mass was

expanded (outside the project scope) to two tasks: In anomaly detection, relative mass

is used to overcome one weakness of current mass-based anomaly detectors using a tree-

based approach and a nearest-neighbour-based approach; in clustering, relative mass is

used to recondition density-based clustering algorithms to successfully find clusters with

varying densities.
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These works have been reported in five papers, where three have been published, one

technical report and one paper is currently under review. In addition, the works on

building mass-based methods using a nearest neighbour approach and its extension to

apply to Bayesian classifier learning, supported by a previous AOARD project, have been

published in Pattern Recognition Journal and Computational Intelligence Journal.

1 Introduction

Two previous projects, supported AOARD from 2010 to 2013, have pioneered mass es-

timation and shown that it is an effective and efficient alternative to density estimation

in handling five data mining tasks: information retrieval, regression, anomaly detection,

clustering and Bayesian classification. This project deepens the impact already achieved

using mass estimation to elicit the utility of non-metric similarity measures in data mining

tasks.

This project aims to

1. Create non-metric similarity measures for numeric data.

2. Elicit the relative functions of unary measures, as currently estab-

lished in mass estimation, and binary similarity measures in solving

data mining problems.

3. Evaluate the new measures in classification and information retrieval

tasks.

The ultimate goal of the work is to find answers to the following two fundamental research

questions:

1. To compute similarity between any two instances, do we have to use a metric?

2. Do we have to compute similarity/distance between instances to solve a data mining

problem?

All three project aims have been achieved by the end of the project period. This report

provides the findings in a more concise form, extracted from the papers [3, 4, 5, 6, 7]
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produced from this research. The theoretical analyses are provided in Section 2, the

results and discussion in Section 3, and the final remark in Section 4.

2 Theoretical Analyses

This section describes the theoretical analyses of non-metric similarity measures and a

derivative of mass measure called relative mass in the following two subsections.

2.1 mp dissimilarity measure

The new dissimilarity measure uses data distribution as the primary contributor in mea-

suring dissimilarity between instances. Rather than using a spatial distance in each di-

mension, mp-dissimilarity evaluates the dissimilarity between two instances in terms of

probability mass in a region covering the two instances in each dimension. The final

dissimilarity between the two instances is estimated as a power mean of dissimilarities in

each dimension as in `p-norm. The intuition behind the proposed dissimilarity measure is

that two instances are likely to be more dissimilar if there are more instances in between

and around them in many dimensions. Under the proposed data dependent dissimilar-

ity measure, two instances in a dense region of the distribution are more dissimilar than

two instances having the same geometric distance in a sparse region, as prescribed by

psychologists.

In order to measure dissimilarity between x and y, instead of using (xi − yi) in `p-norm,

we propose to consider the relative positions of x and y with respect to the rest of the

data distribution in each dimension. The dissimilarity between x and y in dimension i

can be estimated as the probability data mass in a region Ri(x,y) that encloses x and

y. If there are many instances in Ri(x,y), x and y are likely to be more dissimilar in

dimension i. Using the same power mean formulation as in `p-norm, the data dependent

dissimilarity measure based on probability mass can be defined as:

mp(x,y) =

(
d∑
i=1

(
|Ri(x,y)|

n

)p) 1
p

(1)

where |Ri(x,y)| is the data mass in regionRi(x,y), Ri(x,y) = [min(xi, yi)− δi,max(xi, yi) + δi],

δi ≥ 0 and n is the number of data instances. An example of Ri(x,y) is shown in Figure
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1. We use δi = σi
2

(σi is the standard deviation of data in dimension i) in this paper.

Figure 1: Ri(x,y)

We call the proposed dissimilarity measure mp(x,y) ‘mp-dissimilarity’. This mea-

sure captures the essence of the distance-density model proposed by psychologists which

prescribes that two instances in a sparse region are more similar than two instances in

a dense region. Although mp employs the same power mean formulation as `p, the core

calculation is based on mass rather than distance. It signifies the degree of dissimilarity:

the higher the measure, the more dissimilar the two instances are; just like `p.

The formulation of mp(x,y) (Eqn. 1) has a probabilistic interpretation (we refer the

reader to the attached paper for details).

2.2 Relative Mass

A derivative of mass called relative mass is introduced to overcome one weakness of the

basic (unary) mass measure. As a global measure, mass has been shown to be an efficient

and effective alternative to density in modelling data distribution to solve different data

mining problems [11]. However, some problems require a local measure which takes local

distribution into consideration. For example, in the anomaly detection context, density-

based anomaly detectors has been shown to have difficulty detecting local anomalies if

the basic density is employed. A relative density measure such as Local Outlier Factor

[15] has been proposed to overcome this weakness. Relative mass follows the same idea.

Indeed, it overcomes the same issue in mass-based anomaly detector such as iForest [8].

Two implementations of relative mass have been created. The first is based on iForest [8]

and the second is based nearest neighbour implementation of mass estimation [1]. These

are described in the following two subsections.

2.2.1 ReMass-iForest

This section describes iForest and its weakness in detecting local anomalies and introduces

the new anomaly detector, ReMass-iForest, based on the relative mass to overcome the
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weakness.

iForest

Given a d-variate database of n instances (D = {x(1),x(2), · · · ,x(n)}), iForest [8] con-

structs t iTrees (T1, T2, · · · , Tt). Each Ti is constructed from a small random sub-sample

(Di ⊂ D, |Di| = ψ < n) by recursively dividing it into two non-empty nodes through

a randomly selected attribute and split point. A branch stops splitting when the height

reaches the maximum (Hmax) or the number of instances in the node is less than MinPts.

The default values used in iForest are Hmax = log2(ψ) and MinPts = 1. The anomaly

score is estimated as the average path length over t iTrees as follows:

L(x) =
1

t

t∑
i=1

`i(x) (2)

where `i(x) is the path length of x in Ti

As anomalies are likely to be isolated early, they have shorter average path lengths. Once

all instances in the given data set have been scored, the instances are sorted in ascending

order of their scores. The instances at the top of the list are reported as anomalies.

iForest runs very fast because it does not require distance calculation and each iTree is

constructed from a small random sub-sample of data.

iForest is effective in detecting global anomalies (e.g., a1 and a2 in Figures 2a and 2b)

because they are more susceptible to isolation in iTrees. But it fails to detect local

anomalies (e.g., a1 and a2 in Figure 2c) as they are less susceptible to isolation in iTrees.

This is because the local anomalies and the normal cluster C3 have about the same density.

Some fringe instances in the normal cluster C3 will have shorter average path lengths than

those for a1 and a2.

ReMass-iForest

In each iTree Ti, the anomaly score of an instance x w.r.t its local neighbourhood, si(x),

can be estimated as the ratio of data mass as follows:

si(x) =
m(T̆i(x))

m(Ti(x))× ψ
(3)
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Figure 2: Global and Local anomalies. Note that both anomalies a1 and a2 are exactly
the same instances in Figures (a), (b) and (c). In Fig.(a) and Fig.(b), a1 and a2 have low
density than that in the normal clusters C1 and C2. In Fig.(c), a1, a2 and the normal
cluster C3 have the same density but a1 and a2 are anomalies relative to the normal cluster
C1 with a higher density.

where Ti(x) is the leaf node in Ti in which x falls, T̆i(x) is the immediate parent of Ti(x),

and m(·) is the data mass of a tree node. ψ is a normalisation term which is the training

data size used to generate Ti.

si(·) is in (0, 1] because a parent node has mass values ranging from 2 to ψ in an iTree

created from a training set of ψ instances. The higher the score the higher the likelihood

of x being an anomaly. Unlike `i(x) in iForest, si(x) measures the degree of anomaly

locally.

The final anomaly score can be estimated as the average of local anomaly scores over t

iTrees as follows:

S(x) =
1

t

t∑
i=1

si(x) (4)

Once every instance in the given data set has been scored, instances can be ranked in

descending order of their anomaly scores. The instances at the top of the list are reported

as anomalies.

Relation to LOF and DEMass-LOF

The idea of relative mass in ReMass-iForest has some relation to the idea of relative density

in Local Outlier Factor (LOF) [15]. LOF uses k nearest neighbours to estimate density

f̄k(x) =
|N(x, k)|

n
∑

x′∈N(x,k) distance(x,x
′)

where N(x, k) is the set of k nearest neighbours of x.

It estimates its anomaly score as the ratio of the average density of x’s k nearest neighbours

to f̄k(x). In LOF, the local neighbourhood is defined by k nearest neighbours which

requires distance calculation. In contrast, in ReMass-iForest, the local neighbourhood is
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Table 1: Ranking measure and complexities (time and space) of ReMass-iForest, iForest,
DEMass-LOF and LOF.

ReMass- DEMass
iForest iForest -LOF LOF

Ranking
1

tψ

t∑
i=1

m(T̆i(x))

m(Ti(x))

1

t

t∑
i=1

`i(x)

∑t
i=1

m(T̆i(x))
v̆i∑t

i=1
m(Ti(x))

vi

∑
x′∈N(x,k)

f̄k(x′)
|N(x,k)|

f̄k(x)
Measure

Time
O(t(n+ ψ) logψ) O(t(n+ ψ) logψ) O(t(n+ ψ)bd) O(dn2)

Complexity
Space

O(tψ) O(tψ) O(tdψ) O(dn)
Complexity

v̆i and vi are the volumes of nodes T̆i(x) and Ti(x), respectively.

the immediate parent in iTrees. It does not require distance calculation.

DEMass-LOF [9] computes the same anomaly score as LOF from trees, without distance

calculation. The idea of relative density of parent and leaf nodes was used in DEMass-

LOF. It constructs a forest of t balanced binary trees where the height of each tree is

b × d (b is a parameter that determines the level of division on each attribute and d is

the number of attributes). It estimates its anomaly score as the ratio of average density

of the parent node to the average density of the leaf node where x falls. The density of

a node is estimated as the ratio of mass to volume. It uses mass to estimate density and

ranks instances based on the density ratio. Like iForest, it is fast because no distance

calculation is involved. But, it has limitation in dealing problems with even a moderate

number of dimensions because each tree has 2(b×d) leaf nodes.

In contrast to LOF and DEMass-LOF, ReMass-iForest does not require density estima-

tion, it uses relative mass directly in order to estimate the local anomaly score from each

iTree.

The ranking measure and complexities (time and space) of ReMass-iForest, iForest, DEMass-

LOF and LOF are provided in Table 1.

2.2.2 iNNE

The intuition of iNNE comes from the fact that an anomaly is expected to be far from its

nearest neighbour; and the reverse is true for a normal instance. Thus, we propose to use

a small sample from the given data set and build a region around each instance in order to

isolate it from the rest of the instances. The instance to be isolated is placed at the centre
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of the region and the boundary of the region is defined by the distance to the instance’s

nearest neighbour. The sample size determines the number of regions to be created. A

sample size of ψ will produce ψ regions in order to isolate each and every instance in the

sample. Because of the use of nearest neighbour to determine the boundary of a region,

the size of the region adapts to the data distribution: large regions in sparse area and

small regions in dense area.

Like iForest, iNNE isolates each instance in a subsample and builds an ensemble from

multiple subsamples. We formally define iNNE as follows.

Let S ⊂ D be a subsample of size ψ selected randomly without replacement from a dataset

D ⊂ <d, and let ‖x−y‖ denote the Euclidean distance between instances x and y, where

x,y ∈ <d.
ηc is the nearest neighbour of c, and τ(c) = ‖c− ηc‖, where c, ηc ∈ S
B(c), a hypersphere centred at c with radius τ(c), is defined to be {x : ‖x− c‖ < τ(c)}
Note that B(c) is the largest hypersphere which isolates instance c from the rest of the

instances in S. Its radius τ(c) is a measure of the degree of isolation of c. The larger the

radius, the more isolated c is; and vice versa. Also the relative size of B(c) and B(ηc) is a

measure of isolation of c relative to its neighbourhood. Such a measure is defined below.

Isolation score I(x) based on S is defined as follows:

I(x) =


1− τ(ηc)

τ(c)
if x ∈

⋃
c∈S

B(c)

1 otherwise

where τ(c) = min{τ(d) : x ∈ B(d), d ∈ S}

From the above definitions, we can deduce that 0 ≤ I(x) ≤ 1, because
τ(ηc)

τ(c)
≤ 1.

iNNE has an ensemble of hyperspheres {
⋃
c∈Si

B(c) | i = 1, . . . , t}, generated from t sub-

samples Si, i = 1, . . . , t.

The anomaly score based on iNNE is defined as follows: For every x ∈ <d,

Ī(x) =
1

t

t∑
i=1

Ii(x)
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where Ii(x) is the isolation score based on Si

Based on the anomaly score defined above, instances are ranked in descending order and

the highest ranked instances are more likely to be anomalies.

iNNE is implemented as a two-stage process: (i) In training stage, t models as defined

in Definition 2.2.2 are built from t randomly selected subsamples of sample size ψ. (ii)

In evaluation stage, each test instance is evaluated against every model in iNNE and the

isolation scores from t models are averaged to produce the anomaly score as defined in

Definition 2.2.2.

In training stage, nearest neighbour search is required in building each of the t models,

which accounts for time complexity of O(tψ2) and space complexity of O(tψ). In the

second stage, distance is calculated between n instances and every training instance in a

model. Since this is done for t models, it accounts for time complexity of O(ntψ). Thus,

the time complexity is dominated by that in the evaluation stage and is linear with respect

to n.

Comparing iNNE, iForest and LOF

iNNE, being an isolation based anomaly detection approach, inherits the concept of iso-

lation from iForest. The formulation of the isolation score in iNNE is influenced by the

relative density score used in LOF. Table 2 provides a concise comparison between iNNE,

iForest and LOF.

Note that the degree of isolation used in both iForest and iNNE is a proxy to mass. In the

case of iForest, a region of high mass is expected to have a high number of partitions to

isolate an instance in the region. In the case of iNNE, a region of high mass is expected to

have a small radius hypersphere to isolate an instance in the region. Thus, the anomaly

score used by iNNE is viewed to be a variant of relative mass.
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iNNE iForest LOF
Key mechanism Isolation Isolation Density
Training set Randomly selected

sample from the
dataset

Randomly selected
sample from the
dataset

Entire dataset

Model Space partitioning
using hypersphere

Axis parallel space
partitioning

No explicit model

Anomaly score

1− τ(ηc)

τ(c)

Number of axis
parallel partitions
required to isolate

Ratio of the density
of x’s local neigh-
bourhood and the
density of x.

Dimensions used All dimensions Subset of dimen-
sions

All dimensions

Time O(ntψ) O(ntψ) O(n2)
Space O(tψ) O(tψ) O(n)

Table 2: Comparison between iNNE, iForest and LOF in terms of base concept, method-
ology and complexity

3 Results and Discussion

This section provides the results and discussion for non-metric similarity measures and

relative mass in the following two subsections.

3.1 mp-dissimilarity measure

We evaluated the performance of mp against `p and cosine distance in kNN classification

and information retrieval. Eleven data sets from different domains with different sizes

(1000 ≤ n ≤ 9100), number of dimensions (188 ≤ d ≤ 10000) and number of classes

(2 ≤ c ≤ 52) were used. All the attributes in the data sets are numeric. Out of 11 data

sets used, six are from text mining domain, two from music classification and retrieval

domain, 2 from character recognition and the last one is a synthetic data set from UCI

machine learning repository. Text data were represented by TFIDF weighted ‘bag of

words’ vectors. Other data sets (non-text) were normalised to the range of [0,1].

All classification experiments were conducted using a 10-fold cross validation. We used

four settings of p (2.0, 1.0, 0.5, 0.1) in `p and mp and two settings of k (k = 1 and k = 10)

for all classifiers. The average accuracy (%) over a 10-fold cross validation is reported. The
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accuracies of two algorithms are considered to be significantly different if their confidence

intervals (based on ± one standard error) do not overlap. The best average classification

accuracy over a 10-fold cross validation achieved by mp, `p and cosine distance in all 11

data sets is presented in Figure 3. A red dot on the top of the bar indicates that the best

performer had significantly better classification accuracy than the other two contenders.

Figure 3: The best classification accuracies of `p, mp and cosine distance in kNN classifier.
A red dot on the top signifies that the best performer had significantly better classification
accuracy than the other two contenders.

As shown in Figure 3, mp produced better classification accuracies than `p and cosine

distance in eight data sets and similar results in the other three data sets. The result

is statistically significant in five data sets (CNAE, R8, R52, Webkb and HBA) and not

significantly worst in any data set.

It is interesting to note that mp produced significantly better classification accuracy than

`p in all six text (sparse) data sets; and better than cosine distance in four out of six.

This is because mp assigns (i) the maximum dissimilarity (of a dimension) if the majority

of instances have the same value which is often the case in sparse text data where term

frequencies are zeros in many dimensions; and (ii) the minimum dissimilarity if the value

11



has the least number of training instances in the local neighbourhood.

In terms of p, mp produced better results with p = 2 in eight out of 11 data sets used with

the exceptions of Amazon (p = 0.5), CNAE (p = 0.1) and Madelon (p = 0.1). The result

with `p, was mixed: p = 0.1 produced better classification result in four data sets, p = 2

was better in four, p = 1 was better in two and 0.5 was better in one data set. Generally,

we observed that p = 2 is a reasonable setting in mp, but we can not say anything about

setting p in `p as the accuracy varies significantly with p.

Similar results were observed in the information retrieval tasks. We refer the reader to

the attached paper of the detail empirical results.

3.2 Relative Mass

This section presents the results of two implementations of relative mass and applied in

anomaly detection. The tree implementation is described in the first subsection and the

nearest neighbour implementation in the second subsection.

3.2.1 ReMass-iForest

Two experiments are conducted to compare the anomaly detection accuracy of ReMass-

iForest and iForest.

In the first experiment, a synthetic data set is used to demonstrate the ability of ReMass-

iForest to detect local anomalies. The data set has 263 normal instances in three clusters

and 12 anomalies representing global, local and clustered anomalies. The data distribution

is shown in Figure 4a. Instances a1, a2 and a3 are global anomalies; four instances in A4

and two instances in A5 are clustered anomalies; and a6, a7 and a8 are local anomalies;

C1, C2 and C3 are normal instances in three clusters of varying densities.

Figures 4b-4d show the anomaly scores of all data instances obtained from iForest and

ReMass-iForest. With iForest, local anomalies a6, a7 and a8 had lower anomaly scores than

some normal instances in C3; and it produced AUC of 0.98. In contrast, ReMass-iForest

had ranked local anomalies a6, a7, a8 higher than any instances in normal clusters C1, C2

and C3 along with global anomalies a1, a2 and a3. But, ReMass-iForest with MinPts = 1

did not rank clustered anomalies in A4 higher than all normal instances, and it produced

AUC of 0.99. One fringe instance in the cluster C3 was ranked higher than two clustered

anomalies in A4. This is because cluster anomalies have similar mass ratio w.r.t their

12
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Figure 4: Anomaly scores by iForest and ReMass-iForest using t = 100, ψ = 256. Note
that in anomaly score plots, instances are represented by their values on x1 dimension.
Anomalies are represented by black lines and normal instances are represented by gray
lines. The height of lines represents the anomaly scores. In order to differentiate the scores
of normal and anomaly instances, the maximum score for normal instances is subtracted
from the anomaly scores so that all normal instances have score of zero or less.
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Table 3: AUC and runtime (seconds) of ReMass-iForest (RM), iForest (IF), DEMass-LOF
(DM), and LOF in benchmark datasets.

AUC Runtime
Data set n d RM IF DM LOF RM IF DM LOF

Http 567K 3 1.00 1.00 0.99 1.00 71 99 19 19965
ForestCover 286K 10 0.96 0.88 0.87 0.94 42 56 4 2918

Mulcross 262K 4 1.00 1.00 0.99 1.00 20 23 16 2169
Smtp 95K 3 0.88 0.88 0.78 0.95 10 12 16 373

Shuttle 49K 9 1.00 1.00 0.95 0.98 4 9 7 656
Mammography 11K 6 0.86 0.86 0.86 0.68 1 1 5 127

Satellite 6K 36 0.71 0.70 0.55 0.79 1 4 0.6 24
Breastw 683 9 0.99 0.99 0.98 0.96 0.1 0.4 0.3 0.4

Arrhythmia 452 274 0.80 0.81 0.52 0.80 0.3 0.5 5 1
Ionosphere 351 32 0.89 0.85 0.85 0.90 2 3 0.5 0.3

parents as that for the instances in sparse normal cluster C3. Clustered anomalies were

correctly ranked and AUC of 1.0 was achieved when MinPts was increased to 5. The

performance of iForest did not improve when MinPts was increased to any values in the

range (2, 3, 4, 5 and 10).

In the second experiment, we used the ten benchmark data sets previously employed by

Liu et al (2008) [8]. In ReMass-iForest, iForest and DEMass-LOF, the parameter t was

set to 100 as default and the best value for the sub-sample size ψ was searched from 8, 16,

32, 64, 128 to 256. In ReMass-iForest, MinPts was set to 5 as default. iForest uses the

default settings as specified in [8], i.e, MinPts = 1. The level of subdivision (b) for each

attribute in DEMass-LOF was searched from 1, 2, 3, 4, 5, and 6. In LOF, the best k was

searched between 5 and 4000 (or to n
4

for small data sets), with steps from 5, 10, 20, 40,

60, 80, 150, 250, 300, 500, 1000, 2000, 3000 to 4000. The best results were reported. The

characteristics of the data sets, AUC and runtime (seconds) of ReMass-iForest, iForest,

DEMass-LOF and LOF are presented in Table 3.

In terms of AUC, ReMass-iForest had better or at least similar results to iForest. Based

on the two-standard-error significance test, it produced better results than iForest in the

ForestCover and Ionosphere data sets. Most of these datasets do not have local anomalies.

So, both methods had similar AUC in eight data sets. Note that iForest did not improve

AUC when MinPts was set to 5. ReMass-iForest had produced significantly better AUC

than DEMass-LOF in relatively high dimensional data sets (Arrhythmia - 274, Satellite
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- 36, Ionosphere - 32, ForestCover - 10, Shuttle - 9). These results show that DEMass-

LOF has problem in handling data sets with a moderate number of dimensions (9 or 10).

ReMass-iForest was competitive to LOF. It was better than LOF in the Mammography

data set, worse in the Smtp and Satellite data sets, and equal performance in the other

seven data sets.

As shown in Table 3, the runtime of ReMass-iForest, iForest and DEMass-LOF were of

the same order of magnitude whereas LOF was upto three order of magnitude slower in

large data sets. Note that we can not conduct a head-to-head comparison of runtime of

ReMass-iForest and iForest with DEMass-LOF and LOF because they were implemented

in different platforms (MATLAB versus JAVA). The results are included here just to

provide an idea about the order of magnitude of runtime. The difference in runtime of

ReMass-iForest and iForest was due to the difference in ψ and MinPts. MinPts = 5

results in smaller size iTrees in ReMass-iForest than those in iForest (MinPts = 1).

Hence, ReMass-iForest runs faster than iForest even though the same ψ is used.

3.2.2 iNNE

Because of the use of relative mass, iNNE can detect local anomalies as well as ReMass-

iForest. This result can be found in [5].

Because of the use of non-axis-parallel partitions, the contour of anomaly score of iNNE

is much better than that of iForest. This result is shown in the following subsection.

Anomalies surrounded by normal clusters

When anomalies are surrounded by normal clusters, they are masked by normal instances

in axis-parallel projections. Since, iForest uses axis-parallel subdivisions to isolate anoma-

lies, it cannot isolate anomalies which are masked in axis parallel projections. In contrast,

iNNE employs non-axis-parallel partitions in its isolation mechanism. Hence, iNNE does

not have the same issue.

To analyse this issue, we draw contour maps of anomaly score in two dimensional space.

We expect that an ideal anomaly detector should have tight contours separating regions

which contain normal instances from the rest of space. Figure 5a shows a spiral shape

dataset, and it has six anomalies in-between the spiral lines. Note that, these anomalies

would be masked by normal instances when projected onto either of the two dimensions.
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(a) (b) (c)

Figure 5: (a) Spiral dataset with 4000 normal instances (blue cross) and 6 anomaly
instances (red diamond) (b) Contour graph of iNNE (t= 100, ψ= 256) anomaly score for
spiral dataset. AUC = 1.00, Anomaly Ranking: 1 - 6. (c) Contour graph of iForest (t=
100, ψ= 256) anomaly score for spiral dataset. AUC = 0.86, Anomaly Ranking: 75, 320,
345, 354, 563, 1802

Figures 5b and 5c show the contour maps drawn by anomaly scores of iNNE and iForest,

respectively.

The contour map of iNNE model data distribution well, and it also ranks the anomalies

on top of the ranked list with AUC equals to 1.0. However, iForest produces jagged con-

tours; and it gives low anomaly scores to the space in-between the spiral lines and places

anomalies not at the top of the ranked list.

This result clearly highlights the issue iForest has with regard to such situations. However,

the isolation mechanism of iNNE is able to overcome this weakness.

Scale-up test

When it comes to large datasets, execution time is a key factor of concern. Time com-

plexity of a method is the deciding factor for its execution time. Most of the distance and

density based anomaly detectors have a quadratic time complexity O(n2) due to nearest

neighbour calculations, which can be reduce to O(nlog(n)) using some indexing method.

Despite the fact that iNNE is a nearest neighbour method, it has a linear time complexity

and can scale up to very large datasets.
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An experiment was conducted to examine the increase in run time with increasing data

size. We used the Mulcross data generator to generate 5 dimensional datasets with in-

creasing data sizes. The generated data sizes are: 1000, 5000, 10000, 50000, 100000,

200000, 500000, 1000000, 5000000 and 10000000. Parameter k of LOF and ORCA is set

to 50, which is a moderate value for this data set with clustered anomalies. The default

settings of iForest were used: t = 100 and ψ = 256 [8]. iNNE used the following settings:

t = 100 and ψ = 32.

Because LOF’s memory requirement is high, LOF was executed with 64GB memory.

iNNE, iForest and ORCA were executed with 32GB memory. LOF with R*-Tree indexing

(LOFIndexed) and without indexing scheme (LOF) were conducted to examine the effect

of indexing scheme.

We run each job up to a maximum of 20 days. With this time limit, LOF could only

complete the task up to half a million instances; and ORCA could only complete the task

up to a million instances.

Figure 6 shows the scale-up test result using 1000 instances as the base for the ratio

calculations. The result shows that LOF and ORCA took significantly longer than iNNE

and iForest, especially in large data sets. LOFIndexed has similar run time ratio as those

of iNNE and iForest for data size of 1 million or less. However, LOFIndexed had a much

steeper run time ratio beyond 1 million instances. It is apparent that LOF would be

prohibitively expensive for data sets with 10 million instances which has a projected run

time of 220 days. ORCA ran faster than LOF; but, it is still going to take a projected run

time of 15 days for the data set with 10 million instances. Indexing has made LOF run

faster; however, it still took more than 7 hours, compared with less than 2 hours by iNNE

for the same data set. iForest is by far the most efficient of all these methods, with just

9 minutes execution time. Moreover, both iNNE and iForest have low gradients in the

scale-up plot, which implies that the data size limit that they can handle is much higher

than other distance-based methods. This experiment provides strong evidence that the

ensemble approach of both iForest and iNNE is the key to handle large data sets.
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Figure 6: Scale-up test using Mulcross 5 dimensional datasets. Execution time for
10 million dataset iNNE: 1 hour 40 minutes, iForest: 9 minutes, LOF: 220 days (pro-
jected value), LOFIndexed: 7 hours 30 minutes, and ORCA: 15 days (projected value).
Note that the starting overhead and the file I\O are excluded from time measurements.

3.3 Functions of unary and binary mass-based measures

In this project, we have found that the relative function of unary and binary mass-based

measures cannot be easily distinguished because of the creation of relative mass which can

be implemented as either unary or binary measure. Specifically, we have found that binary

measures or relative mass are essential in addressing issues that are unable to be resolved

using unary measures or mass. The issues that are being addressed are task specific.

In this project, we have identified these issues in two tasks, i.e., anomaly detection and

clustering.

18



Two outcomes prevail in anomaly detection:

• The earliest mass-based method that employs unary measure, iForest [8], has been

identified to have difficulty in detecting local anomalies. The relative mass, imple-

mented as a unary measure, is used to address this issue by simply replacing the

measure used, i.e., path length which is a proxy to mass, to relative mass. Here,

exactly the same trees are employed in both iForest and ReMass-iForest. Thus,

ReMass-iForest has the new ability to detect local anomalies and has the same time

complexity as iForest. This has been described in Section 2.2.1.

• In the previous project, we have converted LOF to DEMass-LOF by simply replacing

the distance-based density estimator (using a binary measure) with mass-based

density estimator (DEMass which uses a unary measure). In this case, DEMass-LOF

runs orders of magnitude faster than LOF; and both have the equivalent detection

accuracy, including the ability to detect local anomalies.

The above two relationships are depicted in Figure 7.

In clustering, the popular density clustering algorithm, DBSCAN (which uses a binary

measure), has two key weaknesses: (a) it has high time and space complexities; and (b)

it is unable to find all clusters of greatly varying densities. Unary mass measures are

employed to address the first issue in two ways by replacing the distance-based density

estimator with either mass estimator [12] or mass-based density estimator [9]. In this

case, the unary measure approach only addresses the efficiency issue and both methods

have the weakness as DBSCAN in finding all clusters of greatly varying densities. The

relative mass, implemented as a binary measure in RMSCAN, is used to address the

second issue [7]. The conversion from DBSCAN to RMSCSAN is simply replacing the

distance measure with relative mass measure, leaving the rest of the algorithm unchanged.

While this addressed the second issue, both RMSCAN and DBSCAN have the same time

complexity.
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Figure 7: The conversion from distance-based density-based methods to mass-based meth-
ods in two tasks: anomaly detection (LOF, DEMass-LOF, iForest and ReMass-iForest)
and clustering (DBSCAN, DeMass-DBSCAN, MassTER, RMSCAN.)

4 Final Remark

The two-year project has exceeded the planned objectives by investigating in four data

mining tasks—two more than those specified in the project proposal. The project pro-

duced the first mass-based similarity measures and relative mass, and it has been success-

fully completed with the following outcomes:

1. Two non-metric similarity measures, Massim and mp-dissimilarity, are proposed.

Two implementations of Massim are created using balanced and imbalance trees.

Preliminary assessments in classification, clustering and information retrieval tasks

are very promising. The result of imbalanced tree, which is not presented in this

report, can be found in [4]. mp-dissimilarity has a simpler implementation without

building trees or a model. This measure has been shown to perform better than
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`p-norm and the cosine measure in kNN classification and information retrieval,

especially in sparse high dimensional data sets.

2. Three implementations of relative mass are proposed since the introduction of mass

estimation in 2010. The first two implementations of relative mass have been cre-

ated using trees and nearest neighbour. The assessments in anomaly detection

are very conclusive: relative mass is better than mass without any disadvantage.

The third implementation has been applied to solve a long outstanding problem

in density-based clustering algorithms, i.e., their inability to identify all clusters of

hugely varying densities. There were many attempts to solve this problem; but

these solutions were proposed without first identifying the exact conditions under

which the density-based clustering algorithms will fail. In contrast, our solution is

a principled approach targeted at the identified conditions.

Both of these results represent a significant milestone in mass estimation research. The

non-metric similarity measures are a generalisation of mass estimation from a unary func-

tion to a binary function, enabling a similarity between two instances to be measured

using a measure which is primarily relied on data distribution. This is in sharp contrast

with distance-based measure which is based solely on positions in the feature space.

Relative mass is an interesting research topic because it can be applied as a unary function

or a binary function, depending on the task at hand: the application of relative mass in

information retrieval and clustering tasks can be interpreted as a similarity measure, while

it is a unary function in anomaly detection tasks.
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5.5 Significant collaborations

I attended and made a presentation at the program review in the area of Computational

Cognition and Robust Decision Making, at AFOSR headquarter in Arlington Virginia on

9-13 December 2013. I had a meeting with Hiroshi Motoda annually during the project

period and made a presentation in each meeting.

Takashi Washio of Osaka University has contributed significantly in the project, resulting

in three joint papers [1, 3, 4]. Monash colleagues, Geoffrey Webb, Gholamreza Haffari,

David Albrecht and Mark Carman, have collaborated in this project, and they are the

co-authors in five papers.
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Note

Mass-based similarity papers:

• Paper [6] provides the theory and assessments of the first version of mass-based

similarity measure and a tree implementation.

• Paper [3] presents the a simplified version of mass-based similarity without building

trees or a model.

Relative Mass papers:

• Paper [4] reveals the first relative mass implementation using tree and assess its

performance in anomaly detection and information retrieval.

• Paper [5] proposes the first implementation of relative mass using nearest neighbour

approach, using a variant described in [1].

• Paper [7] presents the first relative mass similarity measure and uses it to replace

density measure in DBSCAN to overcome the one key weakness of density-based

clustering algorithms.

Papers produced as a result of previous AOARD projects:

• Paper [1] presents the first linear time complexity nearest neighbour algorithm. This

work was supported by a previous AOARD project.

• Paper [2] extends the work previously published in PAKDD-2013 [10] to present

the first generic approach to estimate multi-dimensional likelihood p(x|y) directly

by aggregating pi(x|y) estimated from an ensemble of estimators where each esti-

mator is constructed from a small fixed-size random sub-sample of data Di ⊂ D

(i = 1, 2, ..., t). This is a generic approach because pi(x|y) can be estimated using

different data modelling methods. DEMass-Bayes [9] and MassBayes [10] are two

realisations of the proposed generic approach. In this paper, we introduce an ad-

ditional realisation of the proposed generic approach called ENNBayes along with

MassBayes. ENNBayes estimates pi(x|y) from Di using a nearest neighbour density

estimator which is a variant described in [1].
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Wikipedia entry

The Wikipedia entry of mass estimation has been established in March 2014. It can be

found at http://en.wikipedia.org/wiki/Mass estimation.

Software Downloads

The source codes of multi-dimensional mass estimation, DEMass-DBSCAN, DEMass-

Bayes and MassBayes, algorithms proposed in papers [11, 9, 10], are made available at

http://sourceforge.net/projects/mass-estimation/
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